First example of carbonyl condensation of cyclopentadienone hydrazone giving mixed azine and its subsequent *endo*-dimerization into the tricyclo[5.2.1.0^{2.6}]decadiene system

V. A. Nikanorov, * S. V. Sergeev, G. E. Vainer, D. V. Zverev, E. V. Vorontsov, P. V. Petrovskii, O. L. Tok, and V. V. Mikul'shina

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.
Fax: 007 (095) 135 5085. E-mail: vanik@ineos.ac.ru

The monomeric hydrazone of cyclopenta-2,4-dienone (cyclone) undergoes condensation with 2-hydroxy-3-methoxybenzaldehyde to yield the corresponding mixed azine, which spontaneously dimerizes to 4,10-bis(2-hydroxy-3-methoxybenzalazino)tricyclo[5.2.1.0^{2.6}]deca-3,8-diene.

Key words: cyclopentadienone, hydrazones, azines, Diels-Alder condensation.

In the course of our studies on the synthesis of polyheteroatomic "cascade" metal complexes, we have called attention to the hydrazone of cyclopenta-2,4-dienone (cyclone) (1). If this compound would undergo Schiff condensation type reactions at the free amino group, it would give rise to new classes of polyconjugated azine ligands (2) containing a terminal cyclopentadiene group, bound through a two-nitrogen-bridge to other structural fragments capable of coordinating transition metals.

However, up to now, hydrazones of cyclopentadienone derivatives have been considered to be fairly chemically inert;³ this may be due to the fact that the type 1a bipolar form makes a substantial contribution to their structure, which has been discussed in some published papers.^{2,4} Compound 1 is also of interest because under ambient conditions it exists in the monocyclic form, which is not typical for the non-benzenoid aromatic compounds of the cyclopentadiene series, since they tend (Scheme 1) to undergo spontaneous dimerization according to the Diels-Alder reaction pattern to yield tricyclic systems $(A \rightarrow B)$. The elucidation of the possible roles of the monomeric and dimeric structures in the series of imino-substituted cyclopentadienylidene synthons constituted the subject of a study⁶ in which a convenient synthetic strategy was developed for the transformation of cyclopentadienone dimers into bis-oximes $(A \rightarrow B \rightarrow C)$, which were converted into the corresponding monocyclic oximes by thermolysis $(C \rightarrow D)$.

We showed that hydrazone 1 actually does not react with relatively inert ketones: for example, it does not react with 4-methyl-4-trichloromethylcyclohexa-2,5-dien-1-one or 4-methyl-4-trichloromethyl-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)cyclohexa-2,5-diene in a MeOH solution (20 °C, 6 days). Nevertheless, hydrazone 1 reacts with aldehydes at reasonable rates. For example,

Scheme 1

when compound 1 is kept (72 h) with o-vanilline (3) in anhydrous MeOH in an argon atmosphere at 20 °C, Schiff condensation occurs without acid catalysts* and is accompanied by spontaneous dimerization of the expected monocyclic form (4) of the mixed azine to give a

^{*} The use of inorganic acids (HCl traces), which are normally employed in such situations, led to instantaneous resinification of compound 1.

product with the tricyclo[5.2.1.0^{2.6}]decadiene structure (5) (Scheme 2). The latter compound was isolated by column chromatography on SiO₂. In addition, small amounts of azinoketone (6) arising due to partial hydrolysis of one of the azino groups of the major product 5 on silica gel* and of the azine of o-vanilline (7) apparently resulting from the competing process of symmetrization of bis-azine 5 according to the known transhydrazonation⁸ pattern, were isolated from the reaction mixture.

Scheme 2

The structures of all the compounds obtained were determined from the data of elemental analysis, ¹H NMR spectroscopy, and mass spectrometry. The mass spectra make it possible to simultaneously observe both the molecular ion of the skeletal dimer 5 with m/z 456 and the ion of the corresponding monocyclic azine 4, formed by its cyclodestruction, with half mass number, m/z 228. The study of compound 5 by two-dimensional ¹H-¹H correlated spectroscopy (COSY), which enabled the chemical shifts of the signals for all the protons in its carbon skeleton to be unambiguously assigned and its spin-spin coupling constants to be measured, showed that 5 has the expected endo-configuration, which is also normal for other Diels-Alder adducts of cyclopentadienone. This is confirmed, first, by the presence of fairly strong spin-spin coupling of the H-2 and H-6 protons with the bridgehead H-1 and H-7 protons nearest to them (the constants are 4.3 and 4.8 Hz, respectively, whereas the spin-spin coupling of the analogous endo-protons in exo-norbornene derivatives normally does not exceed 2 Hz)10 and, second, by the adequate spinspin coupling constant between the H-2 and H-6 protons (6.6 Hz), fairly close to that observed for cyclopentadienone adducts known to have the endo-configuration (6.3 Hz).11

Thus, we performed for the first time a new $A \rightarrow D \rightarrow C$ strategy for the synthesis of functionally hetero-substituted derivatives of the tricyclo-[5.2.1.0^{2.6}]deca-3,8-diene skeleton from a monomeric cyclopentadienylidene precursor.

Experimental

The course of the reaction was monitored by TLC. The R_f values are given for a fixed layer of Silufol UV-254 SiO₂ and for CHCl₃—Et₂O, 10:1, as the eluent. Visualization was carried out by ultraviolet light or by iodine vapor. Column chromatography was performed with Chemapol 40/100 SiO₂.

IR spectra were recorded on a UR-20 spectrophotometer (Karl Zeiss); ¹H NMR spectra were obtained on a Bruker AMX-400 instrument operating at 400.1 MHz with tetramethylsilane as the internal standard. EI mass spectra were obtained on an MS-890 spectrometer (70 eV).

Hydrazone 1 was obtained by a previously described procedure, 2 and commercial o-vanilline 3 was additionally recrystallized from heptane.

Reaction of hydrazone 1 with o-vanilline (3). A solution of compound 3 (0.184 g, 1.21 mmol) in 2 mL of anhydrous MeOH was added to a solution of compound 1 (0.11 g, 1.21 mmol) in 4 mL of anhydrous MeOH. The resulting mixture was stirred under argon for 3 days at 20 °C and then concentrated *in vacuo*. The residue was dissolved in CHCl₃ (2 mL) and chromatographed on a column with SiO₂ (l = 20, d = 2 cm, CHCl₃—Et₂O, 10:1, as the eluent).

Fractions with $R_f = 0.55$ were combined and concentrated in vacuo, and the residue was crystallized from a CHCl₃—n-hexane mixture (5:1) to give 0.01 g (2.7 %) of o-vanilline azine 7, m.p. 195–196 °C (lit. data: 198–199 °C). ¹² MS, m/z ($I_{\rm rel}(\%$)): 300 [M]⁺ (92), 150 (100).

Fractions with $R_f = 0.22$ were combined, concentrated in vacuo, and crystallized from Et₂O to give 0.05 g (18 %) of

[•] The relatively high-frequency position of the maximum of the absorption band corresponding to the arising carbonyl group in the IR spectrum of compound 6 (1780 cm⁻¹) indicates that of the two structurally nonequivalent azine groups present in molecule 5, the group located at the *endo*-bridging carbon atom is the first to be hydrolyzed (*cf.* results obtained in Ref. 7).

4,10-bis[(2-hydroxy-3-methoxy)benzalazinoltricyclo[5.2.1.0^{2.6}]deca-3,8-diene (5), m.p. 135—137 °C. Found (%): C, 68.13; H, 4.94; N, 12.15. C₂₆H₂₄N₄O₄. Calculated (%): C, 68.41; H, 5.29; N, 12.27. ¹H NMR (C_6D_6), δ : 2.73 (m, C, 68.41; H, 5.29; N, 12.27. ¹H NMR (C_6D_6), δ : 2.73 (m, 1 H, H-2), 3.25 (dd, 1 H, H-6, ${}^3J_{6-2} = 6.65$ Hz, ${}^3J_{6-7} = 4.8$ Hz), 3.46 (s, 3 H, OMe), 3.49 (s, 3 H, OMe), 3.60 (dd, 1 H, H-1, ${}^3J_{1-2} = 4.8$ Hz, ${}^3J_{1-9} = 3.2$ Hz), 4.07 (dd, 1 H, H-7, ${}^3J_{7-6} = 4.8$ Hz, ${}^3J_{7-8} = 3.2$ Hz), 5.38 (dd, 1 H, H-9, ${}^3J_{9-8} = 6.25$ Hz, ${}^3J_{9-1} = 3.2$ Hz), 5.73 (dd, 1 H, H-8, ${}^3J_{8-9} = 6.25$ Hz, ${}^3J_{8-7} = 3.2$ Hz), 5.75 (dd, 1 H, H-3, ${}^3J_{3-4} = 5.6$ Hz, ${}^3J_{3-2} = 2.6$ Hz), 6.25 (dd, 1 H, H-4, ${}^3J_{4-3} = 5.6$ Hz, ${}^4J_{4-2} = 1.5$ Hz), 6.63 (m, 6 H, Ar), 8.54 (s, 1 H, CH=N), 8.62 (s, 1 H, CH=N), 12.29 (s, 1 H, OH), 12.57 (s. 1 H, OH), MS. m/z ($L_{m}(\%)$): 456 [M]⁺ (0.1), 228 12.57 (s, 1 H, OH). MS, m/z ($I_{rel}(\%)$): 456 [M]⁺ (0.1), 228 (100). Column chromatography of the mother liquor on SiO₂ afforded 0.02 g (5.0 %) of 5-(2-hydroxy-3-methoxy)benzalazinotricyclo[5.2.1.0^{2.6}]deca-3,8-dien-10-one **6** ($R_f = 0.31$). IR (KBr), v/cm^{-1} : 1630 (C=C), 1780 (C=O). H NMR (C_6D_6) , δ : 2.2 (dd, 1 H, H-1), 2.68 (m, 1 H, H-2), 3.02 (dd, 1 H, H-6, ${}^{3}J_{6-2} = 6.3$ Hz, ${}^{3}J_{6-7} = 4.8$ Hz), 3.46 (s, 3 H. OMe), 6.67 (dd, 1 H, H-7), 5.55 (dd, 1 H, H-9, ${}^{3}J_{9-8} =$ 6.7 Hz), 5.67 (dd, 1 H, H-8), 5.68 (dd, 1 H, H-3), 6.27 (dd, 1 H, H-4, ${}^{3}J_{4-3} = 5.6$ Hz, ${}^{4}J_{4-2} = 1.5$ Hz), 6.61 (m, 3 H, Ar), 8.6 (s, 1 H, CH=N), 12.41 (s, 1 H, OH). MS, m/z $(I_{\rm rel}(\%))$: 308 [M]⁺ (1.6), 280 [M-CO]⁺ (100).

This work was carried out with the financial support of the Russian Foundation for Basic Research (Project No. 94-03-08873) and the International Science Foundation (Grant MHW 000).

References

 V. A. Nikanorov, S. V. Sergeev, S. E. Mochalovskii, O. L. Tok, G. E. Vainer, A. V. Komissarov, Ya. V. Kucherinenko,

- S. G. Novikov, V. V. Mikul'shina, S. Morrison, M. P. Sigalas, and O. Aizenshtain, Novye vidy stereodinamiki perenosa zaryada v protyazhennykh metalloorganicheskikh tsepyakh sopryazheniya: printsip metall-ligandnogo kaskada [New Forms of Stereodynamics of Charge Transfer in Extended Organometallic Conjugation Chains: The Metal—Ligand Cascade Principle], in: VIII Soveshchanic "Kompleksy s perenosom zaryada i ionradikal'nye soli" [VIII Meeting "Charge-Transfer Complexes and Radical-Ion Salts" (September 27–29, 1994), Moscow—Klyaz'ma, 1994, 76 (in Russian)].
- K. Hafner, G. Schulz, and K. Wagner, Ann. Chem., 1964, 678, 39.
- 3. H. Disselnkotter, Angew. Chem., Int. Ed. Engl., 1963, 3, 379.
- K. Hafner and K. Wagner, Angew. Chem., Int. Ed. Engl., 1963, 2, 740.
- M. A. Ogliaruso, M. G. Romanelli, and E. I. Becker, Chem. Rev., 1965, 65, 261.
- D. Mackay, D. Papadopoulos, and N. J. Taylor, J. Chem. Soc., Chem. Commun., 1992, 325.
- C. H. DePuy and B. W. Ponder, J. Am. Chem. Soc., 1959, 81, 4629.
- 8. Yu. P. Kitaev and B. I. Buzykin, Gidrazony [Hydrazones], Nauka, Moscow, 1974 (in Russian).
- P. G. Baraldi, A. Barco, S. Benetti, G. P. Pollini, E. Polo, and D. Simoni, J. Chem. Soc., Chem. Commun., 1984, 1049.
- L. M. Jackmann and S. Sternhell, Application of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon Press, New York, 1969, 289.
- E. J. Volker, M. G. Pleiss, and J. A. Moore, J. Org. Chem., 1970, 35, 3615.
- 12. R. Linck, Archiv der Chemie, 1885, 235, 341.

Received January 10, 1995;